While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
Molybdenum (Mo) is considered and described as an essential element for living organisms’ development. Until now, no studies have been performed on genes involved in the Mo transporter in ancestral Ipomoea species. This study aimed to identify potential Mo genes in Ipomoea trifida and I. triloba genomes using bioinformatics tools. We identified four Mo transporter genes, two in I. trifida and two in I. triloba. Based on the RNA-seq datasets, we observed that Mo genes are expressed (in silico) and present different mechanisms between the tissues analyzed. The information generated in this study fills missing gaps in the literature on the Mo gene in an important agronomic crop.
With modern society and the ever-increasing consumption of polymeric materials, the way we look at products has changed, and one of the main questions we have is about the negative impacts caused to the environment in the most diverse stages of the life cycle of these materials, whether in the acquisition of raw materials, in manufacturing, distribution, use or even in their final disposal. The main methodology currently used to assess the environmental impacts of products from their origin to their final disposal is known as Life Cycle Assessment (LCA). Thus, the objective of this work is to evaluate how much the biodegradable polymer contributes to the environment in relation to the conventional polymer considering the application of LCA in the production mode. This analysis is configured through the Systematic Literature Review (SLR) method. In this review, 28 studies were selected for evaluation, whose approaches encompass knowledge on LCA, green biopolymer (from a renewable but non-biodegradable source), conventional polymer (from a non-renewable source) and, mainly, the benefits of using biodegradable polymers produced from renewable sources, such as: corn, sugarcane, cellulose, chitin and others. Based on the surveys, a comparative analysis of LCA applications was made, whose studies considered evaluating quantitative results in the application of LCA, in biodegradable and conventional polymers. The results, based on comparisons between extraction and production of biodegradable polymers in relation to conventional polymers, indicate greater environmental benefits related to the use of biodegradable polymers.
Using individual- and panel country-level data from 118 countries for the period 1981–2020, this study investigates the effects of national- and individual-level economic and environmental factors on subjective well-being (SWB). Two individual SWB indicators are selected: the feeling of happiness and life satisfaction. Additionally, two environmental factors are also considered: CO2 emissions by country level and personal perspective on environmental protection. The ordered probit estimation results show that CO2 emissions have a significant negative effect on SWB, and a higher perspective on environmental protection has a significant and positive effect. Compared with the average marginal effect of national income, CO2 emissions are a more important determinant of SWB when considering a personal perspective on protecting the environment. The estimation results are robust to various estimation model specifications: inclusion of additional air pollutants (CH4 and N2O), PM 2.5 and various sample groupings. This study makes a novel contribution by providing comprehensive insights into how both individual environmental attitudes and national pollution levels jointly influence subjective well-being.
The physical-mechanical characteristics of leather are crucial in the tanning industry since they determine whether the leather satisfies quality standards for various product manufacture. This study’s goal was to assess the physical-mechanical characteristics of leather that could be washed and used for garments after the Zetestan-GF polymer was added during the tanning process. The data gathered from the physical-mechanical analysis of two treatments—one a control with white leather (T1) and the other with leather treated with Zetestan-GF polymer (T2)—were compared for the development of this work. Each treatment was performed in triplicate, undergoing three washes, yielding a total of 24 samples for analysis. Following the acquisition of the leather, a control was applied and the various treatments were compared. SAS software version 9.0 was utilized for the data’s statistical analysis. The physical-mechanical properties of the control leather and the leather treated with Zetestan-GF polymer were compared using a one-way ANOVA, and any differences in the means (p < 0.05) were assessed using the Tukey test. The findings showed that while the polymer’s application during the tanning process affects the parameters of softness, tensile strength, elongation percentage, and dry and wet flexometry, it has no effect on the lastometry parameter. In conclusion, the physical-mechanical characteristics of the product made by tanning cow hides can be greatly impacted by the inclusion of a polymer.
Copyright © by EnPress Publisher. All rights reserved.