Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
This study investigates the impact of artificial intelligence (AI) integration on preventing employee burnout through a human-centered, multimodal approach. Given the increasing prevalence of AI in workplace settings, this research seeks to understand how various dimensions of AI integration—such as the intensity of integration, employee training, personalization of AI tools, and the frequency of AI feedback—affect employee burnout. A quantitative approach was employed, involving a survey of 320 participants from high-stress sectors such as healthcare and IT. The findings reveal that the benefits of AI in reducing burnout are substantial yet highly dependent on the implementation strategy. Effective AI integration that includes comprehensive training, high personalization, and regular, constructive feedback correlates with lower levels of burnout. These results suggest that the mere introduction of AI technologies is insufficient for reducing burnout; instead, a holistic strategy that includes thorough employee training, tailored personalization, and continuous feedback is crucial for leveraging AI’s potential to alleviate workplace stress. This study provides valuable insights for organizational leaders and policymakers aiming to develop informed AI deployment strategies that prioritize employee well-being.
This paper investigates the transformative role of Artificial Intelligence (AI) in enhancing infrastructure governance and economic outcomes. Through a bibliometric analysis spanning more than two decades of research from 2000 to 2024, the study examines global trends in AI applications within infrastructure projects. The analysis reveals significant research themes across diverse sectors, including urban development, healthcare, and environmental management, highlighting the broad relevance of AI technologies. In urban development, the integration of AI and Internet of Things (IoT) technologies is advancing smart city initiatives by improving infrastructure systems through enhanced data-driven decision-making. In healthcare, AI is revolutionizing patient care, improving diagnostic accuracy, and optimizing treatment strategies. Environmental management is benefiting from AI’s potential to monitor and conserve natural resources, contributing to sustainability and crisis management efforts. The study also explores the synergy between AI and blockchain technology, emphasizing its role in ensuring data security, transparency, and efficiency in various applications. The findings underscore the importance of a multidisciplinary approach in AI research and implementation, advocating for ethical considerations and strong governance frameworks to harness AI’s full potential responsibly.
The purpose of the study was to examine the role of personalization in motivating senior citizens to use AI driven fitness apps. Vroom’s expectancy theory of motivation was applied to examine the motivation of senior citizens. The responses from participants were collected through structured interviews. The participants belonged to South Asian origin belonging to India, Bangladesh, Nepal and Bhutan. The authors adopted a content analysis approach where the gathered interview responses were coded in the context of elements of Vroom’s theory. The findings of the study indicated that a highly personalized approach in the context of motivation, expectancy, instrumentality and valence will motivate senior citizens to use AI based fitness apps. The study contributes to the personalization of AI fitness apps for senior citizens.
The rapid advancement of information and communication technology has greatly facilitated access to information across various sectors, including healthcare services. This digital transformation demands enhanced knowledge and skills among healthcare providers, particularly in comprehensive midwifery care. However, midwives in rural areas face numerous challenges such as limited resources, cultural factors, knowledge disparities, geographic conditions, and technological adoption. This research aims to evaluate the impact of AI utilization on midwives’ knowledge and behavior to optimize the implementation of healthcare services in accordance with Delima Midwife Service standards in rural settings. The analysis encompasses competencies, characteristics, information systems, learning processes, and health examinations conducted by midwives in adopting AI. The research methodology employs a cross-sectional approach involving 413 rural midwives selected proportionally. Results from Partial Least Squares Structural Equation Modeling indicate that all reflective evaluation variables meet the required criteria. Fornell-Larcker criterion demonstrates that the square root of AVE is greater than other variables. The primary findings reveal that information systems (0.029) and midwives’ competencies (0.033) significantly influence AI utilization. Furthermore, midwives’ competencies (0.002), characteristics (0.031), and AI utilization (0.011) also significantly impact midwives’ knowledge and behavior. Midwives’ characteristics also significantly affect their competencies (0.000), while midwives’ learning influences health examinations (0.000). Midwives’ knowledge and behavior affect the transformation of healthcare services in rural midwifery (0.022). The model fit results in a value of 0.097, empirically supporting the explanation of relationships among variables in the model and meeting the established linearity test.
Copyright © by EnPress Publisher. All rights reserved.