This study provides an empirical examination of the design and modification of China’s urban social security programme. In doing so, this study complements the popular assumption regarding the correlation between economic growth and social security development. Focusing on the economic and political motivations behind the ruling party’s decision to implement social security, this study first discusses the modification of urban social security and welfare in China. It then empirically demonstrates the mechanisms behind the system’s operation. This study proposes the following hypothesis: in a country like China, a change in the doctrine of the ruling party will affect government alliances, negating the positive impact of economic growth on the development of social security. In demonstrating this hypothesis, this study identifies a political precondition impacting the explanatory power of popular conceptions of social security development.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
Iran has one of the oldest civilizations in the world, and many elements of today’s urban planning and design have their origins in the country. However, mass country-city migration from the 1960s onwards brought enormous challenges for the country’s main cities in the provision of adequate housing and associated services, resulting in a range of sub-standard housing solutions, particularly in Tehran, the capital city. At the same time, and notably in the past decade, Iran’s main cities have had significant involvement in the smart city movement. The Smart Tehran Program is currently underway, attempting to transition the capital towards a smart city by 2025. This study adopts a qualitative, inductive approach based on secondary sources and interview evidence to explore the current housing problems in Tehran and their relationship with the Smart Tehran Program. It explores how housing has evolved in Tehran and identifies key aspects of the current provision, and then assesses the main components of the Smart Tehran Program and their potential contribution to remedying the housing problems in the city. The article concludes that although housing related issues are at least being raised via the new smart city technology infrastructure, any meaningful change in housing provision is hampered by the over centralized and bureaucratic political system, an out of date planning process, lack of integration of planning and housing initiatives, and the limited scope for real citizen participation.
Definitive diagnosis of Craniosynostosis (CS) with computed tomography (CT) is readily available, however, exposure to ionizing radiation is often a hard stop for parents and practitioners. Lowering head CT radiation exposure helps mitigate risks and improves diagnostic utilization. The purpose of the study is to quantify radiation exposure from head CT in patients with CS using a ‘new’ (ultra-low dose) protocol; compare prior standard CT protocol; summarize published reports on cumulative radiation doses from pediatric head CT scans utilizing other low-dose protocols. A retrospective study was conducted on patients undergoing surgical correction of CS, aged less than 2 years, between August 2014 and February 2022. Cumulative effective dose (CED) in mSv was calculated, descriptive statistics were performed, and mean ± SD was reported. A literature search was conducted describing cumulative radiation exposure from head CT in pediatric patients and analyzed for ionizing radiation measurements. Forty-four patients met inclusion criteria: 17 females and 27 males. Patients who obtained head CT using the ‘New’ protocol resulted in lower CED exposure of 0.32 mSv ± 0.07 compared to the prior standard protocol at 5.25 mSv ± 2.79 (p < 0.0001). Five studies specifically investigated the reduction of ionizing radiation from CT scans in patients with CS via the utilization of low-dose CT protocols. These studies displayed overall CED values ranging from 0.015 mSv to 0.77 mSv. Our new CT protocol resulted in 94% reduction of ionizing radiation. Ultra-low dose CT protocols provide similar diagnostic data without loss of bone differentiation in CS and can be easily incorporated into the workflow of a children’s hospital.
National governments and academic higher education institutions continue to realign human resource development (HRD) strategies to address the gaps in HRD mandate. This study will investigate new and recalibrated skills that higher institutions (HEIs) professionals and the labor force produce to reconfigure curriculum development in tertiary education. The study extracts narrative from 6 curriculum developers, 3 HRD heads and h3 manpower organizations on the labor landscapes from different local and multinational industries from entry-level to mid-career ranges through case scenario-based interviews and focus group discussions to determine the skills around motivation, innovativeness, and adaptability and subsequently integrate strategic initiatives to reconfigure the compatibility of these skills from higher education institutions to post-pandemic industries. The findings reveal skills that can be managed at the individual level, e.g., self-motivation and adaptability as well as the need to emerge from the technological pressures by adapting to organizational and clientele demands. These human resource traits become the mantra of surviving and progressing in a landscape shaped by the pre- and post-pandemic setting and become the basis of HEI programs to match the needs of the labor force and the industries.
Copyright © by EnPress Publisher. All rights reserved.