This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
Exposure to high-frequency (HF) electromagnetic fields (EMF) has various effects on living tissues involved in biodiversity. Interactions between fields and exposed tissues are correlated with the characteristics of the exposure, tissue behavior, and field intensity and frequency. These interactions can produce mainly adverse thermal and possibly non-thermal effects. In fact, the most expected type of outcome is a thermal biological effect (BE), where tissues are materially heated by the dissipated electromagnetic energy due to HF-EMF exposure. In case of exposure at a disproportionate intensity and duration, HF-EMF can induce a potentially harmful non-thermal BE on living tissues contained within biodiversity. This paper aims to analyze the thermal BE on biodiversity living tissues and the associated EMF and bio-heat (BH) governing equations.
Disaster Risk Management benefits from innovative techniques including AI and Multi Sensor Fusion. The Firefguard Approach uses such technologies to improve the Wildfire Management works in Saxony, Eastern Germany by supporting standing efforts in Early Warning, Disaster Response and Monitoring. Unmanned Aerial Systems (UAS) play a vital role in providing real-time information via a 5G network to a central information management system that delivers geospatial information to response teams. This study highlights the potential of combining UAS, AI, geospatial solutions and existing data for real-time wildfire monitoring and risk assessment systems.
Mangrove forests are vital to coastal protection, biodiversity support, and climate regulation. In the Niger Delta, these ecosystems are increasingly threatened by oil spill incidents linked to intensive petroleum activities. This study investigates the extent of mangrove degradation between 1986 and 2022 in the lower Niger Delta, specifically the region between the San Bartolomeo and Imo Rivers, using remote sensing and machine learning. Landsat 5 TM (1986) and Landsat 8 OLI (2022) imagery were classified using the Support Vector Machine (SVM) algorithm. Classification accuracy was high, with overall accuracies of 98% (1986) and 99% (2022) and Kappa coefficients of 0.97 and 0.98. Healthy mangrove cover declined from 2804.37 km2 (58%) to 2509.18 km2 (52%), while degraded mangroves increased from 72.03 km2 (1%) to 327.35 km2 (7%), reflecting a 354.46% rise. Water bodies expanded by 101.17 km2 (5.61%), potentially due to dredging, erosion, and sea-level rise. Built-up areas declined from 131.85 km2 to 61.14 km2, possibly reflecting socio-environmental displacement. Statistical analyses, including Chi-square (χ2 = 1091.33, p < 0.001) and Kendall's Tau (τ = 1, p < 0.001), showed strong correlations between oil spills and mangrove degradation. From 2012 to 2022, over 21,914 barrels of oil were spilled, with only 38% recovered. Although paired t-tests and ANOVA results indicated no statistically significant changes at broad scales, localized ecological shifts remain severe. These findings highlight the urgent need for integrated environmental policies and restoration efforts to mitigate mangrove loss and enhance sustainability in the Niger Delta.
The COVID-19 pandemic has instigated global lockdowns, profoundly altering daily life and resulting in widespread closures, except for essential services like healthcare and grocery stores. This scenario has notably intensified mental health challenges, particularly among children and adolescents. Influenced by a myriad of factors including developmental stages, educational backgrounds, existing psychiatric disorders, and socioeconomic status, the pandemic’s impact extends beyond the immediate health crisis. This paper critically examines the multifaceted effects of the pandemic on mental and physical health across various age groups. It highlights the increased incidence of stress, anxiety, and depression, underscoring the pandemic’s deep psychological footprint. Additionally, the paper explores the societal implications, from altered family dynamics and educational disruptions due to the shift to online learning, to workplace transformations. These changes have led to a mix of adaptive responses and adverse effects, including heightened domestic tensions and mental health issues. The paper also delves into the ethical challenges faced by medical professionals during this crisis, balancing urgent patient care with ongoing medical research and mental health considerations. This analysis aims to provide a comprehensive understanding of the COVID-19 pandemic’s extensive impact on health and society, emphasizing the importance of addressing mental health as a crucial component of the response strategy.
In Côte d'Ivoire, the government and its development partners have implemented a national strategy to promote agroforestry and reforestation systems as a means to combat deforestation, primarily driven by agricultural expansion, and to increase national forest cover to 20% by 2045. However, the assessment of these systems through traditional field-based methods remains labor-intensive and time-consuming, particularly for the measurement of dendrometric parameters such as tree height. This study introduces a remote sensing approach combining drone-based Airborne Laser Scanning (ALS) with ground-based measurements to enhance the efficiency and accuracy of tree height estimation in agroforestry and reforestation contexts. The methodology involved two main stages: first, the collection of floristic and dendrometric data, including tree height measured with a laser rangefinder, across eight (8) agroforestry and reforestation plots; second, the acquisition of ALS data using Mavic 3E and Matrice 300 drones equipped with LiDAR sensors to generate digital canopy models for tree height estimation and associated error analysis. Floristic analysis identified 506 individual trees belonging to 27 genera and 18 families. Tree height measurements indicated that reforestation plots hosted the tallest trees (ranging from 8 to 16 m on average), while cocoa-based agroforestry plots featured shorter trees, with average heights between 4 and 7 m. A comparative analysis between ground-based and LiDAR-derived tree heights showed a strong correlation (R2 = 0.71; r = 0.84; RMSE = 2.24 m; MAE = 1.67 m; RMSE = 2.2430 m and MAE = 1.6722 m). However, a stratified analysis revealed substantial variation in estimation accuracy, with higher performance observed in agroforestry plots (R2 = 0.82; RMSE = 2.21 m and MAE = 1.43 m). These findings underscore the potential of Airborne Laser Scanning as an effective tool for the rapid and reliable estimation of tree height in heterogeneous agroforestry and reforestation systems.
Copyright © by EnPress Publisher. All rights reserved.