This paper discusses the concept of creating a new reality using the approaches of smart cities to develop eco-cities, in which the necessary balance between nature and progress can be maintained. The authors propose that the concept of smart cities should be used as a tool for the creation of eco-cities, and argue that the positive synergies between the two will be strongest if the smart concept acts as a tool for the creation of eco. The core elements of a smart eco-city are identified as smart sustainable use of resources, a smart sustainable healthy community, and a smart sustainable economy. The results of the article were the foundation for the development concept for Vision Bratislava 2050—the vision and strategy for the development of the capital of the Slovak Republic. The authors also discuss the challenges of transforming cities into smart eco-formats, including the need for digital resilience in the face of potential cataclysms. They suggest that this is a promising area for further research into the concept of smart eco-cities.
The purpose of this research is to present a bibliometric analysis of the literature on the ways in which the motivations of individual sports consumers impact the creation of sports infrastructure and the creation of sports-related policy. Design/methodology/approach: Based on the PRISMA approach and information gleaned from the Scopus database, 2605 publications were found to be pertinent to the subject. We conducted a literature analysis of trends and patterns using VOSviewer-based knowledge mapping. Findings: Recent years have seen a proliferation of scholarly publications on the topic of individual sports consumption motivation and its influence on policy formulation and infrastructure development. This suggests that interest in this field is expanding. The list of eminent journals, decision-makers, and organizations involved in this issue demonstrates its global influence. The interdisciplinary nature of the subject is reflected in the study’s emphasis on the most widely published authors and key research terminology. Originality/value: This study closes significant knowledge gaps regarding the complex interactions between societal, environmental, and individual factors that affect the motivation to consume sports and how these motivations influence decisions about sports infrastructure and policies. It does this by using bibliometric techniques and the most recent data. The project aims to create a more thorough picture of how public health policy, sports governance, and urban planning are impacted by the motivations behind sports consumption. Policy implications: Policymakers, planners, and sports organizations can use the results to generate more targeted and effective strategies for the development of sports infrastructure and policy formulation. The study highlights how important it is to make well-informed policy decisions and participate in customized involvement in order to improve public welfare and the overall sports consumer experience.
Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of and , while temperature profile increases for increasing values of and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of and the drag coefficient increases and the Nusselt number decreases for rising values of and The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.
Naturally occurring radionuclides can be categorized into two main groups: primordial and cosmogenic, based on their origin. Primordial radionuclides stem from the Earth’s crust, occurring either individually or as part of decay chains. Conversely, cosmogenic radionuclides originate from extraterrestrial sources such as space, the sun, and nuclear reactions involving cosmic radiation and the Earth’s atmosphere. Gamma-ray spectrometry is a widely employed method in Earth sciences for detecting naturally occurring radioactive materials (NORM). Its applications vary from environmental radiation monitoring to mining exploration, with a predominant focus on quantifying the content of uranium (U), thorium (Th), and potassium (K) in rocks and soils. These elements also serve as tracers in non-radioactive processes linked to NORM paragenesis. Furthermore, the heat generated by radioactive decay within rocks plays a pivotal role in deciphering the Earth’s thermal history and interpreting data concerning continental heat flux in geophysical investigations. This paper provides a concise overview of current analytical and measuring techniques, with an emphasis on state-of-the-art mass spectrometric procedures and decay measurements. Earth scientists constantly seek information on the chemical composition of rocks, sediments, minerals, and fluids to comprehend the vast array of geological and geochemical processes. The historical precedence of geochemists in pioneering novel analytical techniques, often preceding their commercial availability, underscores the significance of such advancements. Geochemical analysis has long relied on atomic spectrometric techniques, such as X-ray fluorescence spectrometry (XRFS), renowned for its precision in analyzing solid materials, particularly major and trace elements in geological samples. XRFS proves invaluable in determining the major constituents of silicate and other rock types. This review elucidates the historical development and methodology of these techniques while showcasing their common applications in various geoscience research endeavors. Ultimately, this review aims to furnish readers with a comprehensive understanding of the fundamental concepts and potential applications of XRF, HPGes, and related technologies in geosciences. Lastly, future research directions and challenges confronting these technologies are briefly discussed.
Plastic products are items that we use every day around us, and their replacement speed are very fast, so that to recycle waste plastic has become the focus of environmental problems. This study has proposed an optimized circular design for the recycle plant of waste plastic, therefore, and our proposed strategy is to build a new tertiary recycling plant to reduce the total generation amount of the derived solid plastic waste from ordinary and secondary recycling plants and the semi-finished products from secondary recycling plant. Results obtained from a real recycle plant has showed that to recycle the tertiary waste plastic in a tertiary recycling plant, the finished products produced from a secondary recycling plant accounts about 27% of ordinary waste plastic, and the semi-finished products that mainly is scrap hardware accounts about 1% of ordinary waste plastic. Other derived solid plastic waste accounts for 6% of ordinary plastic waste. Therefore, if the ordinary, secondary and tertiary recycle plant can be set all-in-one, it can reduce the total generation amount of derived solid plastic waste from 34% to 6%, without and with a tertiary recycling plant, respectively. It can also increase the operating income of the secondary recycle plant and the investment willingness of the new tertiary recycle plant.
Copyright © by EnPress Publisher. All rights reserved.