Alginate-silver nanocomposites in the form of spherical beads and films were prepared using a green approach by using the aqueous extract of Ajwa date seeds. The nanocomposites were fabricated by in situ reduction and gelation by ionotropic crosslinking using calcium ions in solution. The rich phytochemicals of the date seed extract played a dual role as a reducing and stabilizing agent in the synthesis of silver nanoparticles. The formation of silver nanoparticles was studied using UV-Vis absorption spectroscopy, and a distinct surface plasmon resonance peak at 421 nm characteristic of silver nanoparticles confirmed the green synthesis of silver nanoparticles. The morphology of the nanocomposite beads and film was compact, with an even distribution of silver nanoclusters. The catalytic property of the nanocomposite beads was evaluated for the degradation of 2-nitrophenol in the presence of sodium borohydride. The degradation followed pseudo-first-order kinetics with a rate constant of 1.40 × 10−3 s−1 at 23 ℃ and an activation energy of 18.45 kJ mol−1. The thermodynamic parameters, such as changes in enthalpy and entropy, were evaluated to be 15.22 kJ mol−1 and −197.50 J mol−1 K−1, respectively. The nanocomposite exhibited properties against three clinically important pathogens (gram-positive and gram-negative bacteria).
Fraudulence in cosmetic ingredients is becoming increasingly prevalent, alongside the rising demand and utilization of cosmetics within the populace. One of the whitening agents still utilized in cosmetics is mercury, present in forms such as mercury chloramide (HgNH2Cl2) and mercury chloride (HgCl2). Prolonged mercury exposure can have adverse health effects. To address this issue, alternative mercury analysis methods in samples have been developed, including the utilization of silver nanoparticles amalgamated with sweet potato starch as a stabilizing agent. This paper aims to delve into the roles of silver nanoparticle AgNO3 and sweet potato starch (as a stabilizer) as a sensor for mercury detection, which can be applied in cosmetic products. Detection of mercury utilizing nanoparticles is based on the Surface Plasmon Resonance phenomenon, which endows a high level of selectivity and sensitivity toward the presence of mercury metal ions. When interaction occurs between mercury metal and silver nanoparticles, the liquid undergoes a color change from yellowish-brown to transparent. This phenomenon arises from the oxidation of AgO (yellow) to Ag+ ions (transparent) by the mercury metal. Consequently, a silver nanoparticle sensor utilizing sweet potato starch as a stabilizing agent exhibits the potential to detect mercury metal within a substance with high efficacy.
Cancer is the 3rd leading cause of death globally, and the countries with low-to-middle income account for most cancer cases. The current diagnostic tools, including imaging, molecular detection, and immune histochemistry (IHC), have intrinsic limitations, such as poor accuracy. However, researchers have been working to improve anti-cancer treatment using different drug delivery systems (DDS) to target tumor cells more precisely. Current advances, however, are enough to meet the growing call for more efficient drug delivery systems, but the adverse effects of these systems are a major problem. Nanorobots are typically controlled devices made up of nanometric component assemblies that can interact with and even diffuse the cellular membrane due to their small size, offering a direct channel to the cellular level. The nanorobots improve treatment efficiency by performing advanced biomedical therapies using minimally invasive operations. Chemotherapy’s harsh side effects and untargeted drug distribution necessitate new cancer treatment trials. The nanorobots are currently designed to recognize 12 different types of cancer cells. Nanorobots are an emerging field of nanotechnology with nanoscale dimensions and are predictable to work at an atomic, molecular, and cellular level. Nanorobots to date are under the line of investigation, but some primary molecular models of these medically programmable machines have been tested. This review on nanorobots presents the various aspects allied, i.e., introduction, history, ideal characteristics, approaches in nanorobots, basis for the development, tool kit recognition and retrieval from the body, and application considering diagnosis and treatment.
An alternative to CMOS VLSI called Quantum Cellular Automata (QCA) is presently being researched. Although a few basic logical circuits and devices have been examined, very little, if any, research has been done on the architecture of QCA device systems. In the context of nano communication networks, data transmission that is both dependable and efficient is still critical. The technology known as Quantum Dot Cellular Automata (QCA) has shown great promise in the development of nano-scale circuits because of its extremely low power consumption and rapid functioning. This study introduces a unique nano-communication parity-based arithmetic circuit that is reversible, error-detecting, and error-correcting. The minimal outputs are needed for the proposed structure. Based on QCA technology, the proposed nano-communication network makes use of reversible logic gates. The performance increase of the suggested parity generator and checker circuit is significant in terms of clock delay, size, and number of cells.
This research study explores the addition of chromium (Cr6+) ions as a nucleating agent in the alumino-silicate-glass (ASG) system (i.e., Al2O3-SiO2-MgO-B2O3-K2O-F). The important feature of this study is the induction of nucleation/crystallization in the base glass matrix on addition of Cr6+ content under annealing heat treatment (600 ± 10 °C) only. The melt-quenched glass is found to be amorphous, which in the presence of Cr6+ ions became crystalline with a predominant crystalline phase, Spinel (MgCr2O4). Microstructural experiment revealed the development of 200–500 nm crystallite particles in Cr6+-doped glass-ceramic matrix, and such type microstructure governed the mechanical properties. The machinability of the Cr-doped glass-ceramic was thereby higher compared to base alumino-silicate glass (ASG). From the nano-indentation experiment, the Young’s modulus was estimated 25(±10) GPa for base glass and increased to 894(±21) GPa for Cr-doped glass ceramics. Similarly, the microhardness for the base glass was 0.6(±0.5) GPa (nano-indentation measurements) and 3.63(±0.18) GPa (micro-indentation measurements). And that found increased to 8.4(±2.3) (nano-indentation measurements) and 3.94(±0.20) GPa (micro-indentation measurements) for Cr-containing glass ceramic.
MXenes are one of the most important classes of materials discussed worldwide by many researchers of diverse fields for diverse applications in recent years. It is a nanomaterial with a wide range of applications due to its multiple forms and structures with fascinating properties, for example, high surface area and porosity, biocompatibility, ease of fictionalizing with various active chemical moieties, benefit of high metallic conductivity, activated metallic hydroxide sites, and sensitivity to moisture. MXenes have great chances for potential applications in environmental issues, water purification, biological applications, and energy storage devices and sensors. MXenes show great selectivity towards the absorption of heavy metals and a good capability to reduce chemical and biological pollutants present in the water. The present review article critically analyzed advancements in water purification using the adsorption and reduction abilities of MXenes and their composites. The mechanism of various procedures, important challenges, and associated problems using MXene and their composites are discussed in detail. The future research directions can be extracted from this article efficiently and comprehensively. The energy storage issues of rechargeable lithium-ion batteries, batteries other than lithium-ion batteries, and electrochemical capacitors are also discussed in detail.
In the last few decades, nano-electronic devices have been manufactured using VLSI technology. Over the past four decades, IC technology has been growing by using CMOS technology successfully, but this CMOS technology has a scaling limitation. To overcome this scaling limitation, QCA (quantum dot cellular automata) emerges as an alternative. This work is the implementation of the design of a polar encoder using QCA technology. This design is a single-layered and even bottom-up approach technique. The Polar code is more efficient and has less energy dissipation compared to the turbo code and conventional codes (CC). This design explores (8:4). A Polar encoder is designed to have fewer cells and area compared to the turbo encoder and conventional encoder. The proposed design is implemented using the QCA designer tool.
Freeze-thawing plays a vital role in enhancing materials in medicines. Here, we describe the F-T process of synthesis of Poly (vinyl alcol)- Methylene blue single strand- Mxene (PVA–MB-ssDNA –Mxene), which may be effective for gen delivery applications. The PVA –MB-ssDNA –Mxene hydrogel was formed using 1,3,5 consecutive cycles. We also demonstrated that PVA –MB-ssDNA –Mxene hydrogel can be formed by the affection of DNA with PVA and the MXene network. The F-T process shows the new intra molecular bond of PVA-PVA, compared to the non F-T hydrogel which formed by a biologic crosslinking as MB-ssDNA. Scanning electron microscopy reported that the microstructure. The differential scan shows three endothermic peaks at 70, 180, and 300 ℃ for water loss and decomposition. The swelling behavior rapidly increased due to the PVA chains in the F-T methods and then became stable. With a high concentration of MB-DNA, the tensile strength was slightly high, and the swelling behavior was low. Our results indicated that the PVA –MB-ssDNA –Mxene hydrogel using F-T process would have more suitable structural features as gene hydrogel carrier which need greater mechanical strength and stability in body analyses.
Copyright © by EnPress Publisher. All rights reserved.