Despite Cameroon’s immense sand reserves, several enterprises continue to import standardized sands to investigate the properties of concretes and mortars and to guarantee the durability of built structures. The present work not only falls within the scope of import substitution but also aims to characterize and improve the properties of local sand (Sanaga) and compare them with those of imported standardized sand widely used in laboratories. Sanaga sand was treated with HCl and then characterized in the laboratory. The constituent minerals of Sanaga sand are quartz, albite, biotite, and kaolinite. The silica content (SiO2) of this untreated sand is 93.48 wt.%. After treatment, it rose 97.5 wt.% for 0.5 M and 97.3 wt.% for 1 M HCl concentration. The sand is clean (ES, 97.67%–98.87%), with fineness moduli of 2.45, 2.48, and 2.63 for untreated sand and sand treated with HCl concentrations of 0.5 and 1 M respectively. The mechanical strengths (39.59–42.4 MPa) obtained on mortars made with untreated Sanaga sand are unsatisfactory compared with those obtained on mortars made with standardized sand and with the expected strengths. The HCl treatment used in this study significantly improved these strengths (41.12–52.36 MPa), resulting in strength deficiencies of less than 10% after 28 curing days compared with expected values. Thus, the treatment of Sanaga sand with a 0.5 M HCl concentration offers better results for use as standardized sand.
The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
Copyright © by EnPress Publisher. All rights reserved.