This research aims to empirically examine the role of learning organization practices in enhancing sustainable organizational performance, utilizing knowledge management and innovation capability as mediating variables. The study was conducted in public IT companies across China, which is a vital sector for driving innovation and economic growth. A mixed-methods approach was employed, with quantitative methods accounting for 70% and qualitative methods for 30% of the research. Purposive sampling was utilized to distribute questionnaires to 546 employees from 10 public IT companies. Statistical analysis was conducted using Structural Equation Modeling (SEM). The findings indicate that learning organization practices significantly influence knowledge management practices (β = 0.785, p < 0.001) and innovation capability (β = 0.405, p < 0.001). Furthermore, knowledge management practices positively contribute to sustainable organizational performance (β = 0.541, p < 0.001), while innovation capability also has a positive effect (β = 0.143, p < 0.001). Moreover, knowledge management practices partially mediate the relationship between learning organization practices and sustainable performance, with a total effect of 0.788 (p < 0.001). The mediating role of innovation capability is also significant, with a total effect of 0.422 (p = 0.045). The study further includes qualitative in-depth interviews with 20 managers from 10 IT companies across five regions in China: East, South, West, North, and Central. Senior managers were selected through a stratified sampling method to ensure comprehensive representation by including both the largest and smallest companies in each region. These findings underscore the critical role of learning organizations in promoting sustainability through effective knowledge management and innovation capabilities within the IT sector.
This study analyzes the interaction between legitimacy, innovation, uncertainty, and electric vehicle (EV) purchase intention in Spain, Portugal, Italy, and Greece. Using partial least squares structural equation modeling (PLS-SEM) and data from 2016 to 2023, the relationships between these key variables are assessed. The results show that legitimacy has a positive impact on purchase intention, while innovation influences legitimacy but does not directly affect purchase intention. Uncertainty moderates these relationships in complex ways. The findings suggest that enhancing the perception of legitimacy is crucial to increase EV purchase intention, and strategies promoting innovation and managing uncertainty can improve market acceptance.
In the context of contemporary global challenges such as the COVID-19 pandemic, geopolitical conflicts, and climate change, food security assumes particular significance, being an integral part of national security. This study aims to investigate the interplay between food security and national security systems, with a focus on identifying gaps in the literature and determining directions for further research. The study conducted a systematic literature review on food security and national security systems employing a rigorous and transparent process. The qualitative analysis is grounded in the quantitative one, encompassing studies from Scopus. The examination of the selected peer-reviewed articles revealed several methodological and thematic limitations in existing research: i Geographic imbalance: There is a predominant focus on developed countries, while food security issues in developing countries remain insufficiently studied; ii Insufficient explication: There is a lack of research dedicated to managerial and economic aspects of food security in the context of national security; iii Methodological constraints: There is a predominance of quantitative methods and retrospective/cross-sectional studies. Recommendations include developing comprehensive strategies at both global and national levels to enhance food stability and accessibility.
This research seeks to identify the value of a few common factors determining the speed of economic growth in Baltic states and analyzes their impact in detail on Latvia’s lagging. Latvia’s economic starting point after regaining independence because of the collapse of the Soviet Union was at least comparable to its neighbors. Still, after the implementation of liberal reforms towards a free market’ economy and 20 years of operation as an EU full member, Latvia is lagging in growth, prosperity, and innovation. Within the analysis, this scientific paper pays special attention to the three less discussed factors, namely, the impact of post-Soviet mind-set effects as a part of local innovation culture, lasting since regaining independence in 1991; the importance of the availability of talent pull, its density, diversity, and accessibility; and readiness and capability to capture external knowledge and technology adoption. The overall approach is the systemic assessment of the national innovation system and/or innovation ecosystem, trying to understand the differences between these two models. Research is performed by analysis of the performance of the local innovation ecosystem in connection with export- and Foreign Direct Investment (FDI) policies. The authors present a novel method for visually representing economic growth and its application in analyzing process development within transitional economic nations. The study uses an analytical and synthetical literature review. It offers a new GDP data visualization method useful for monitoring economic development and forecasting potential economic crises—the outcomes from aggregative literature analysis in a consolidated concept are provided for required talent policy proposals. The post-Soviet mindset is seen as a heritage and devious underdog that has left incredibly diverse consequences on today’s society, power structures, economic growth potential, and the emergence of healthy, well-managed, and sustainable innovation ecosystems. The post-Soviet mindset is a seemingly hidden and, at the same time, an intriguing factor that has a significant impact on the desire to make and implement the right decisions related to innovation, education, and other policies promoting business development. The key outcome of the article is that sociocultural aspects and differences in innovation culture led to a slow-down of Latvia’s economic growth compared to Estonia’s and Lithuania’s slightly more successful economic reforms.
This study used quantitative methods to examine the correlation between adaptive learning technology and cognitive flexibility in kids receiving special education. The study included a cohort of 120 kids, ages 8–12, who were diagnosed with particular learning difficulties, ADHD, or autism spectrum disorder. Cognitive flexibility was evaluated using the Wisconsin Card Sorting Test (WCST), while the utilization of adaptive learning technologies was quantified using self–report questionnaires. The data was analyzed using several statistical methods, such as independent samples t-tests, regression, Pearson correlation coefficients, ANOVA, and ANCOVA. The findings revealed a noteworthy and favorable correlation between the utilization of adaptive technology and the scores of cognitive flexibilities. This correlation remained significant even after accounting for demographic characteristics. Moreover, it was shown that the diagnostic status had a moderating effect on the correlation between the utilization of adaptive technology and cognitive flexibility. The results emphasize the capacity of adaptive learning technologies to improve cognitive flexibility abilities in kids with special needs, offering significant knowledge for educators, legislators, and technology developers.
Language is fundamental to human communication, allowing individuals to express and exchange ideas, thoughts, and emotions. In early childhood, some children experience communication disorders that impede their ability to articulate words correctly, posing significant challenges to their learning and development. This issue is exacerbated in developing countries, where limited resources and a lack of technological tools hinder access to effective speech therapy. Traditional speech therapy remains vital, but the latest technological advancements have introduced robotic assistants to enhance therapy for communication disorders. Despite their potential, these technologies are often inaccessible in developing regions due to high production costs and a lack of sustainable manufacturing models. For these reasons, this paper presents “FONA,” a robotic assistant that employs rule-based expert systems to provide tactile, auditory, and visual stimuli. FONA supports children aged 3 to 6 in speech therapy by delivering exercises such as syllable production, word formation, and pictographic storytelling of various phonemes. Notably, FONA was successfully tested on children with cochlear implants, reducing the number of sessions required to produce isolated phonemes. The paper also introduces an innovative analysis of the Make To Order (MTO) manufacturing system for producing FONA in developing countries. This analysis explores two key perspectives: collaborative networks and entrepreneurship, offering a sustainable production model. In a pilot experiment, FONA significantly improved children’s attention spans, increasing the period by 17 min. Furthermore, the economic analysis demonstrates that producing FONA through collaborative networks can significantly reduce costs, making it more accessible to institutions in developing countries. The findings suggest that the project is viable for a five-year period, providing a sustainable and effective solution for addressing communication disorders in children.
The article aims to evaluate the participation of below-poverty-line local community in tourism-related business activity in Himalayan state of Uttarakhand. Further, this article addressed for those who work in the tourism sector. The study employs a mix of methods, including survey data from 500 respondents with a random sampling approach, using Analysis of variance (ANOVA) statistical tools for analysis, other methods were interviews and observations at six tourism sites in Garhwal and four sites in Kumaun. Our findings showed that there has declined in community participation in tourism development, due to the lack of economic benefits obtained in the tourism sector, many believe that the tourism sector does not provide much income growth for them and does not make a significant contribution to the development of their region. Moreover, lack of understanding is considered the basis for community’s inability to play an active role, and lack of stakeholders’ involvement in encouraging them to improve their economy and culture through the tourism sector. Ultimately, this research also underlines the existence of some efforts by tourism travel to encourage public trust, which can help reduce poverty and increase community trust in tourism development in their region.
Introduction: With the adoption of the rural rehabilitation strategy in recent years, China’s rural tourist industry has entered a golden age of growth. Due to the lack of management and decision-support systems, many rural tourist attractions in China experience a “tourist overload” problem during minor holidays or Golden Week, an extended vacation of seven or more consecutive days in mainland China formed by transferring holidays during a specific holiday period. This poses a severe challenge to tourist attractions and relevant management departments. Objective: This study aims to summarize the elements influencing passenger flow by examining the features of rural tourist attractions outside China’s largest cities. Additionally, the study will investigate the variations in the flow of tourists. Method: Grey Model (1,1) is a first-order, single-variable differential equation model used for forecasting trends in data with exponential growth or decline, particularly when dealing with small and incomplete datasets. Four prediction algorithms—the conventional GM(1,1) model, residual time series GM(1,1) model, single-element input BP neural network model, and multi-element input BP network model—were used to anticipate and assess the passenger flow of scenic sites. Result: The multi-input BP neural network model and residual time series GM(1,1) model have significantly higher prediction accuracy than the conventional GM(1,1) model and unit-input BP neural network model. A multi-input BP neural network model and the residual time series GM(1,1) model were used in tandem to develop a short-term passenger flow warning model for rural tourism in China’s outskirts. Conclusion: This model can guide tourists to staggered trips and alleviate the problem of uneven allocation of tourism resources.
Copyright © by EnPress Publisher. All rights reserved.