Finding the right technique to optimize a complex problem is not an easy task. There are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard problems. Most metaheuristic research is characterized by developing a new algorithm for a task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics can adequately solve them. The purpose of this paper is to promote more frequent reuse of algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed and categorized in a new way in terms of variables or based on the type of task. A lot of emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are also analyzed from a new approach: the focus of the study is that, based on literature, an algorithm has already effectively solved mostly discrete or continuous problems. An algorithm is not modified and adapted to a problem, but methods that provide a possible good solution for a task type are collected. A kind of reverse optimization is presented, which can help the reuse and industrial application of metaheuristics. The paper also contributes to providing proof of the difficulties in the applicability of metaheuristics. The revealed research difficulties can help improve the quality of the field and, by initiating many additional research questions, it can improve the real application of metaheuristic algorithms to specific problems. The paper helps with decision support in logistics in the selection of applied optimization methods. We tested the effectiveness of the selection method on a specific task, and it was proven that the functional structure can help the decision when choosing the appropriate algorithm.
Optimizing Storage Location Assignment (SLA) is essential for improving warehouse operations, reducing operational costs, travel distances and picking times. The effectiveness of the optimization process should be evaluated. This study introduces a novel, generalized objective function tailored to optimize SLA through integration with a Genetic Algorithm. The method incorporates key parameters such as item order frequency, storage grouping, and proximity of items frequently ordered together. Using simulation tools, this research models a picker-to-part system in a warehouse environment characterized by complex storage constraints, varying item demands and family-grouping criteria. The study explores four scenarios with distinct parameter weightings to analyze their impact on SLA. Contrary to other research that focuses on frequency-based assignment, this article presents a novel framework for designing SLA using key parameters. The study proves that it is advantageous to deviate from a frequency-based assignment, as considering other key parameters to determine the layout can lead to more favorable operations. The findings reveal that adjusting the parameter weightings enables effective SLA customization based on warehouse operational characteristics. Scenario-based analyses demonstrated significant reductions in travel distances during order picking tasks, particularly in scenarios prioritizing ordered-together proximity and group storage. Visual layouts and picking route evaluations highlighted the benefits of balancing frequency-based arrangements with grouping strategies. The study validates the utility of a tailored generalized objective function for SLA optimization. Scenario-based evaluations underscore the importance of fine-tuning SLA strategies to align with specific operational demands, paving the way for more efficient order picking and overall warehouse management.
The concept of sustainable urban mobility has gained increasing attention in recent years due to the challenges posed by rapid urbanization and environmental degradation. The objective of this study is to explore the role of on-demand transportation in promoting sustainable urban mobility, incorporating insights from customer interests and demands through survey analysis. To fulfill this objective, a mixed-methods approach was employed, combining a systematic literature review with survey analysis of customer interests and demands regarding on-demand transportation services. This study combines a systematic literature review and a targeted survey to provide a comprehensive analysis of sustainable urban mobility, addressing gaps in understanding customer preferences alongside technological and financial considerations. The literature review encompassed various aspects including technological advancements, regulatory frameworks, user preferences, and environmental impacts. The survey analysis involved collecting data on customer preferences, satisfaction levels, and suggestions for improving on-demand transportation services. The findings of the study revealed significant insights into customer interests and demands regarding on-demand transportation services. Analysis of survey data indicated that factors such as convenience, affordability, reliability, and environmental sustainability were key considerations for customers when choosing on-demand transportation options. Additionally, the survey identified specific areas for improvement, including service coverage, accessibility, and integration with existing transportation networks. By providing flexible, efficient, and environmentally friendly transportation options, on-demand services have the potential to reduce congestions, improve air quality, and enhance overall urban livability.
Rural sub-Saharan Africa faces limited medical access, healthcare worker shortages, and inadequate health information systems. Mobile health (mHealth) technologies offer potential solutions but remain underdeveloped in these settings. This review aims to explore the sociocultural context of mHealth adoption in rural sub-Saharan Africa to support sustainable implementation. A comprehensive Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ) search was conducted in databases like PubMed, MEDLINE, and African Journals Online, covering peer-reviewed literature from 2010 to 2024. Qualitative studies of mHealth interventions were included, with quality assessed via the Critical Appraisal Skills Program (CASP) checklist and data synthesized using a meta-ethnographic approach. Out of 892 studies, 38 met the inclusion criteria. Key findings include sociocultural factors like community trust influencing technology acceptance, local implementation strategies, user empowerment in health decisions, and innovative solutions for infrastructure issues. Challenges include privacy concerns, increased healthcare worker workload, and intervention sustainability. While mHealth can reduce healthcare barriers, success depends on sociocultural alignment and adaptability. Future interventions should prioritize community co-design, privacy protection, and sustainable, infrastructure-aware models.
While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
Smallholder paprika farmers in Zimbabwe contribute to local economies and food security but face supply chain challenges like limited market access and poor infrastructure which lead to post harvest losses and unpredictable prices. To survive, these farmers must adopt sustainable value networks to reduce operational costs and improve performance. This study sought to establish the effect of sustainable value networks on the operational performance of smallholder paprika farming in Zimbabwe. This study, using a positivist research philosophy and a quantitative approach, surveyed 288 smallholder paprika farmers in Zimbabwe. Exploratory factor analysis and partial least squares structural equation modelling were used to validate the constructs and test the hypothesised relationships. Results demonstrate a moderate level of implementation of value networks in smallholder paprika farming characterised by successes and challenges. The findings illustrated resource sharing among smallholder farmers, facilitated by initiatives, such as recycled seed exchanges and financial support through village savings and loan associations. However, results show that challenges persist, particularly with market access and financial support. Results indicate that there is a significant awareness and implementation of green supply chain management practices among smallholder paprika farmers even though they do not have access to resources and live in rural areas. The findings demonstrate that value networks significantly influence the adoption of green supply chain management practices, which in turn positively impact operational performance, environmental performance, and social performance. Green supply chain management practices were found to mediate the relationship between value networks and environmental performance, social performance, and operational performance, underlining the critical role of sustainable practices in enhancing performance outcomes. While environmental performance showed a positive effect on operational performance, the direct influence of social performance on operational performance was found to be statistically insignificant, suggesting the need for further exploration of the factors linking social benefits to operational efficiency. The research contributes to both theory and practice by presenting a sustainable value network model for smallholder paprika farmers, integrating value network, green supply chain management practices and environmental performance to enhance operational performance. Practical implications include policy recommendations to strengthen collaboration between smallholder farmers and other stakeholdersand address power imbalances with intermediaries. Future research should extend the study to other agricultural sectors and incorporate more diverse stakeholder perspectives to validate and generalise the proposed sustainable value network model.
Copyright © by EnPress Publisher. All rights reserved.