This study examined socio-economic factors affecting Micro, Small, and Medium Enterprises (MSME) e-commerce adoption, focusing on gender, income, and education. Using the 2022 National Socio-Economic Survey (Susenas) data, a logistic regression model was employed to analyze key determinants of e-commerce utilization. Additionally, an online survey of 550 MSMEs across 29 provinces was conducted to assess the impact of digitalization on business performance. In comparison, an offline study of 42 MSMEs with low digital adoption provided insights into the barriers hindering digital transformation. A natural experiment was conducted to evaluate the effectiveness of behavioral interventions in promoting the adoption of e-payments and e-commerce. The main contribution of this study lies in integrating large-scale national survey data with experimental approaches to provide a deeper understanding of digital adoption among MSMEs. Unlike previous studies focusing solely on socio-economic determinants, this research incorporated a digital nudging experiment to examine how targeted incentives influenced e-commerce participation. The findings revealed that digital transformation significantly enhanced MSME performance, particularly in turnover, product volume, customer base, and worker productivity. Socio-economic factors such as gender, household head status, and social media access significantly influenced digital adoption decisions. Behavioral nudging proved effective in increasing MSME participation in e-commerce. Although this study was limited to Susenas 2022 data and survey responses, it bridges a critical research gap by linking socio-economic factors with behavioral interventions in MSME digitalization. The findings offer key insights for policymakers in formulating evidence-based strategies to drive MSME digital transformation and e-commerce growth in Indonesia.
This study investigated the influence of infrastructure spending, government debt, and inflation on GDP in South Africa from 1995 to 2023. Motivated by the need for sustainable growth amid fiscal and inflationary pressures, this research addresses gaps in understanding how these factors shape economic performance. The primary objective was to assess these variables’ individual and combined effects on GDP and offer policy recommendations. Using an ARDL model, the study explored long- and short-term relationships among the variables. Results indicate that infrastructure spending positively impacts GDP, promoting long-term growth, while government debt hinders GDP in both short and long runs. Moderate inflation supports growth, but excessive inflation poses risks. These findings imply the need for targeted infrastructure investments, strict debt management practices, and inflation control measures to sustain economic stability and growth. Policy recommendations include expanding public investment in productive infrastructure, implementing fiscal rules to prevent unsustainable debt levels, and maintaining inflation within a controlled range. Ultimately, these policies could help South Africa build a resilient, balanced economy that addresses both immediate growth needs and long-term stability.
The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s energy- and transportation-related greenhouse gas reduction plan. The number of passengers estimated during the feasibility study period was used to calculate the greenhouse gas reduction effect of project implementation. Most of the estimated numbers exceed the actual number of passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The variables affecting the number of passengers were the population in the vicinity of stations, offices, and shopping malls, the number of bus lines that serve the area, and the length of the road. The DDRM accurately predicted the number of passengers within 10% of the observed change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030.
The global adoption of sustainable development practices is gaining momentum, with an increasing emphasis on balancing the social, economic, and environmental pillars of sustainability. This study aims to assess the current state of these pillars within the uMlalazi Local Municipality, South Africa, and evaluate the initiatives in place to address related challenges. The purpose is to gain a deeper understanding of how effectively these three pillars are being addressed in the context of local governance. Using qualitative research methods, the study gathered data from a sample of five key informants, including three local government officials, one councillor, and one chief information officer from the local police. Data was collected through open-ended interview questions, with responses recorded, transcribed, and analysed for thematic content. The findings reveal significant gaps in the municipality’s approach to sustainability, including the absence of formalized trading areas, limited community input in planning and decision-making, high crime rates, and persistent unemployment. These issues were found to be interlinked with other challenges, such as inefficiencies in solid waste management. Additionally, the study confirms that the three pillars of sustainability are not treated equally, with economic and social aspects often receiving less attention compared to environmental concerns. This highlights the need for the municipality to focus on formalizing trading areas, encouraging local economic growth, and enhancing public participation in governance. By implementing incentives for greater community involvement and addressing the imbalances between the sustainability pillars, uMlalazi can make significant progress toward achieving more sustainable development.
It is important for society to know the actions implemented by companies in the construction sector to reduce the environmental pollution generated by this industry and to contribute to the solution of economic and social problems in their environment; however, the variables that allow identifying their contributions and impacts are not known. Based on this problem, the study focuses on identifying the factors that influence sustainability management within the construction sector in Colombia. The research presents a predictive approach and uses a quantitative methodology, applying statistical modeling techniques. The sample corresponds to 84 Colombian companies. As a result, a system of equations of the form y=mx+b is presented to describe the deviation of the environmental, economic, social, compensation measures, management, indicators and sustainability reports. The analysis of the intersections constitutes a projective tool to evaluate the relationships and balance points between the dimensions analyzed, helping to identify strengths and opportunities for improvement.
Over the past 50 years, urban planning documents have been drawn up in sub-Saharan African cities without any convincing results. The study of secondary towns in Chad shows that these planning documents have been hampered by natural and man-made factors. The aim of this study is to determine the factors hindering the implementation of planning documents in the town of Pala in Chad. To carry out the study, a methodological approach (using quantitative and qualitative data) based on a questionnaire and interview survey was deployed for data collection. With a sample of 300 households surveyed, the main conclusions of the study show that all the factors identified, such as water erosion with a rate of 17.7 T/Ha/year, expose the town to various risks. Demographics, on the other hand, represent a lesser and therefore acceptable challenge. As far as exogenous factors are concerned, the level of education of the head of household is a determining factor in the implementation and acceptance of urban planning documents in Pala. Confirmatory factor analysis and the Chi2 test revealed that consideration of stakeholders’ needs and their inclusion in the process of drawing up these documents are factors that significantly influence their implementation. In contrast, age, gender and other variables did not reveal any significant anomalies in our analyses. Consequently, future efforts to implement Pala’s planning documents must be based on community participation and awareness of the acceptance of these documents, which are necessary in a process of decentralization and urban planning.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
Copyright © by EnPress Publisher. All rights reserved.