Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
We report a method for effectively and homogeneously incorporating carbon nanotubes (CNTs) in the form of double-wall (DWCNTs) and multi-wall (MWCNTs) structures into commercial paints without the use of additives, surfactants, or chemical processes. The process involves the physical mixing of the nanotubes and polymers using the cavitation energy of an ultrasonic bath. It is a simple, fast method that allows for uniform distribution of carbon nanotube bundles within the polymer for direct application. Due to the hydrophobic properties of the carbon nanotubes as grown, we used paint samples containing 0.3% by mass of both types of CNTs and observed an improvement in waterproofing through wettability and water absorption through immersion tests on the samples. Different solvents such as water, formaldehyde, and glycerin were used, and the results showed an increase in paint impermeability of 30% and 25% with the introduction of DWCNTs and MWCNTs, respectively. This indicates a promising, economically viable, and revolutionary method for applying nanotechnology in the polymer industry.
This review comprehensively summarizes various preparatory methods of polymeric bone scaffolds using conventional and modern advanced methods. Compilations of the various fabrication techniques, specific composition, and the corresponding properties obtained under clearly identified conditions are presented in the commercial formulations of bone scaffolds in current orthopedic use. The gaps and unresolved questions in the existing database, efforts that should be made to address these issues, and research directions are also covered. Polymers are unique synthetic materials primarily used for bone and scaffold applications. Bone scaffolds based on acrylic polymers have been widely used in orthopedic surgery for years. Polymethyl methacrylate (PMMA) is especially known for its widespread applications in bone repair and dental fields. In addition, the PMMA polymers are suitable for carrying antibiotics and for their sustainable release at the site of infection.
A novel composite material based on polymers (polyvinyl alcohol, polyvinyl butyral) and liquid crystal (4-n-pentyl-4’-cyanobiphenyl) has been developed and studied. Configuration transformations of point defects in nematic droplets under the influence of an electric field, caused by localized changes in the concentration of NLC within the polymer matrix, have been discovered and analyzed. The boundary conditions necessary for achieving a nematic structure with homogeneous alignment of the director both within the droplet and at its surface have been established, optimizing the anisotropy of light transmission in polymer-dispersed liquid crystal (PDLC) films. Additionally, polarization effects inside nematic droplets under the application of an electric field have been identified.
In this paper, the characteristic behavior of the disc consisting of thermoplastic composite CF/PA6 material was considered. Analysis was made by taking into account the usage areas of the materials and referring to certain temperatures between 30 ℃ and 150 ℃. Composite materials are lightweight; they show high strength. For these reasons, they are preferred in technology, especially in the aircraft and aerospace industry. With this study, the radial and tangential stresses determined within a certain temperature The temperatures were determined and compared with previous studies in the literature. According to the results obtained, it is believed that the thermoplastic composite CF/PA6 disc design can be used in engineering.
This review summarizes some of the recent advances related to shallow penetration conformance sealants (SPCS) based on cross-linked polymer nanocomposite gels. The cross-linked polymer nanocomposite gels formed a three-dimensional (3D) gel structure upon contact with either water or oil when placed at the downhole. Therefore, the cross-linked polymer nanocomposite gels offer a total or partial water shutoff. Numerous polymeric gels and their nanocomposites prepared using various techniques have been explored to address the conformance problems. Nevertheless, their instability at high temperature, high pressure, and high salinity down-hole conditions (HT-HP-HS) often makes the treatments unsuccessful. Incorporating inert particles into the cross-linked polymer nanocomposite gel matrices improves stability under harsh down-hole conditions. This review discusses potential polymeric nanocomposite gels and their successful application in conformance control.
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
In order to understand the finishing effect of Waterborne Acrylic Paint under different painting methods and amount, bamboo-laminated lumber for furniture was coated with waterborne acrylic paint, then the effects of different painting methods and amount on the drying rate, smoothness, hardness, adhesion and wear resistance of the paint film were investigated. Further, the mechanism of film formation was described by thermal property analysis using thermogravimetry and differential scanning calorimeter. The results show that different painting methods have little effect on film properties, the drying time of primer and topcoat are not affected by them, which is 8/8.5 min for primer surface/solid and 6.5/7 min for topcoats. The film surface hardness and adhesion can reach B and 0 grade, the best wear resistance of the film is 51.24 mg·100 r−1 when using one-layer primer one-layer topcoat. Different coating amount has great influence on film properties, the drying speed of the film increases with the increase of the painting amount. The film properties reach the best when the painting amount is 80 g/m2, while too little painting amount leads to the decrease of hardness, and too much leads to the wear resistance weaken. Thermal analysis of the primer and topcoat show that water decomposition occurs at 100 ℃ and thermal decomposition of organic components occur at 350 ℃. Topcoats have better thermal stability than primers higher than that of topcoat, the topcoat displayed better thermal stability than the primer.
Copyright © by EnPress Publisher. All rights reserved.