The WRKY gene family plays a very diverse role in plant growth and development. These genes contained an evolutionarily conserved WRKY DNA binding domain, which shows functional diversity and extensive expansion of the gene family. In this study, we conducted a genome-wide comparative analysis to investigate the evolutionary aspects of the WRKY gene family across various plant species and revealed significant expansion and diversification ranging from aquatic green algae to terrestrial plants. Phylogeny reconstruction of WRKY genes was performed using the Maximum Likelihood (ML) method; the genes were grouped into seven different clades and further classified into algae, bryophytes, pteridophytes, dicotyledons, and monocotyledons subgroups. Furthermore, duplication analysis showed that the increase in the number of WRKY genes in higher plant species was primarily due to tandem and segmental duplication under purifying selection. In addition, the selection pressures of different subfamilies of the WRKY gene were investigated using different strategies (classical and Bayesian maximum likelihood methods (Data monkey/PAML)). The average dN/dS for each group are less than one, indicating purifying selection. Our comparative genomic analysis provides the basis for future functional analysis, understanding the role of gene duplication in gene family expansion, and selection pressure analysis.
The experiments were carried out to validate an analytical method and to examine the impact of various decontaminating solutions on the removal of acephate residues from okra. Acephate analysis was performed using HPLC-UV, and sample extraction was done using the QuEChERS method. Method validation encompassed assessing specificity, linearity, precision, accuracy, as well as limits of detection (LOD) and quantification (LOQ). The method exhibited excellent linearity with R2 values ≥ 0.99. LOD and LOQ were determined at 0.5 µg mL−1 and 2 µg mL−1, respectively. The results indicated average recoveries ranging from 80.2% to 83.3% with a % RSD below 5%. The decontamination procedures include rinsing with running tap water, soaking in lukewarm water, 2% CH3COOH, 1% NaCl, 5% NaHCO3, 0.01% KMnO4, and in commercially available decontamination products such as nimwash, veggie clean, and arka herbiwash for a duration 10 minutes. Among all the treatments, soaking in nimwash solution showed remarkable effectiveness (96.75% removal), followed by veggie clean (94.97% removal) and arka herbiwash (95.80% removal). Washing okra samples in running tap water was found to be the least effective compared to other treatments.
Soil salinity is a major abiotic stress that drastically hinders plant growth and development, resulting in lower crop yields and productivity. As one of the most consumed vegetables worldwide, tomato (Solanum lycropersicum L.) plays a key role in the human diet. The current study aimed to explore the differential tolerance level of two tomato varieties (Rio Grande and Agata) to salt stress. To this end, various growth, physiological and biochemical attributes were assessed after two weeks of 100 mM NaCl treatment. Obtained findings indicated that, although the effects of salt stress included noticeable reductions in shoots’ and roots’ dry weights and relative growth rate as well as total leaf area, for the both cultivars, Rio Grande performed better compared to Agata variety. Furthermore, despite the exposure to salt stress, Rio Grande was able to maintain an adequate tissue hydration and a high leaf mass per area (LMA) through the accumulation of proline. However, relative water content, LMA and proline content were noticeably decreased for Agata cultivar. Likewise, total leaf chlorophyll, soluble proteins and total carbohydrates were significantly decreased; whereas, malondialdehyde was significantly accumulated in response to salt stress for the both cultivars. Moreover, such negative effects were remarkably more pronounced for Agata relative to Rio Grande cultivar. Overall, the current study provided evidence that, at the early growth stage, Rio Grande is more tolerant to salt stress than Agata variety. Therefore, Rio Grande variety may constitute a good candidate for inclusion in tomato breeding programs for salt-tolerance and is highly recommended for tomato growers, particularly in salt-affected fields.
Medicinal herbs have been extensively utilized in the remediation of various health conditions. Dialium guineense fruit pulp, also well known as Velvet Tamarind is widely consumed in West Africa for its dietary and medicinal properties. The study aims to analyze the phytochemical constituents, vitamin content and the in vitro antioxidant effect of Dialium guineense fruit pulp (DGFP). The phytochemical constituents, vitamins (C, E, B1-12) composition, and in vitro antioxidant activity were examined utilizing standardized analytical methods. The qualitative and quantitative phytochemical screening of the fruit pulp of Dialium guineense was also carried out; the result indicated the presence of flavonoids, alkaloids, saponins, tannins, terpenoids, phenols, steroids, and cardiac glycosides in varying concentrations. The vitamin composition revealed that vitamin C was higher than other vitamins in the fruit pulp. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and nitric oxide scavenging assay showed high radical scavenging activity while the FRAP (Ferric reducing antioxidant power) assay revealed significant reducing power. This indicates that Dialium guineense fruit pulp has potential health benefits.
Banana (Musa spp.) productivity is limited by sodic soils, which impairs root growth and nutrient uptake. Analyzing root traits under stress conditions can aid in identifying tolerant genotypes. This study investigates the root morphological traits of banana cultivars under sodic soil stress conditions using Rhizovision software. The pot culture experiment was laid out in a Completely Randomized Design (CRD) under open field conditions, with treatments comprising the following varieties: Poovan (AAB), Udhayam (ABB), Karpooravalli (ABB), CO 3 (ABB), Kaveri Saba (ABB), Kaveri Kalki (ABB), Kaveri Haritha (ABB), Monthan (ABB), Nendran (AAB), and Rasthali (AAB), each replicated thrice. Parameters such as the number of roots, root tips, diameter, surface area, perimeter, and volume were assessed to evaluate the performance of different cultivars. The findings reveal that Karpooravali and Udhayam cultivars exhibited superior performance in terms of root morphology compared to other cultivars under sodic soil stress. These cultivars displayed increased root proliferation, elongation, and surface area, indicating their resilience to sodic soil stress. The utilization of Rhizovision software facilitated precise measurement and analysis of root traits, providing valuable insights into the adaptation mechanisms of banana cultivars to adverse soil conditions.
Olive production is threatened by a fungal pathogen, Armillaria mellea (Vahl. Fr.) P. Kumm.,causing decline in trees worldwide. Effectiveness of once and twice applications of fungicides hexaconazole, propicoconazole and thiophanate-methyl and application of biological agent (Trichoderma harzianum) to control A. mellea was studied at orchard scale during four years. T. harzianum inhibited the pathogen growth on agar media. This antagonistic fungus provided a 25% control efficiency of A. mellea on olive trees younger than 15 years which was the same as control efficiency of once application of hexaconazole. Control efficiencies as perfect as 100% were determined on younger (<15 years old) diseased olive trees treated with once applications of thiophanate-methyl and hexaconazole, and twice applications of thiophanate-methyl. Moreover, olive tree age was significantly effective on fungicidal control efficiency. Hence, this four-year research advanced our understanding of sustainable olive production in study region and other geographical areas with similar agro-ecological characteristics.
Copyright © by EnPress Publisher. All rights reserved.