Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.
Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
Copyright © by EnPress Publisher. All rights reserved.