This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005–2013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs).
Fog computing (FC) has been presented as a modern distributed technology that will overcome the different issues that Cloud computing faces and provide many services. It brings computation and data storage closer to data resources such as sensors, cameras, and mobile devices. The fog computing paradigm is instrumental in scenarios where low latency, real-time processing, and high bandwidth are critical, such as in smart cities, industrial IoT, and autonomous vehicles. However, the distributed nature of fog computing introduces complexities in managing and predicting the execution time of tasks across heterogeneous devices with varying computational capabilities. Neural network models have demonstrated exceptional capability in prediction tasks because of their capacity to extract insightful patterns from data. Neural networks can capture non-linear interactions and provide precise predictions in various fields by using numerous layers of linked nodes. In addition, choosing the right inputs is essential to forecasting the correct value since neural network models rely on the data fed into the network to make predictions. The scheduler may choose the appropriate resource and schedule for practical resource usage and decreased make-span based on the expected value. In this paper, we suggest a model Neural Network model for fog computing task time execution prediction and an input assessment of the Interpretive Structural Modeling (ISM) technique. The proposed model showed a 23.9% reduction in MRE compared to other methods in the state-of-arts.
The multifaceted nature of the skills required by new-age professions, reflecting the dynamic evolution of the global workforce, is the focal point of this study. The objective was to synthesize the existing academic literature on these skills, employing a scientometric approach . This involved a comprehensive analysis of 367 articles from the merged Scopus and Web of Science databases. Science. We observed a significant increase in annual scientific output, with an increase of 87.01% over the last six years. The United States emerged as the most prolific contributor, responsible for 21.61% of total publications and receiving 34.31% of all citations. Using the Tree algorithm of Science (ToS), we identified fundamental contributions within this domain. The ToS outlined three main research streams: the convergence of gender, technology, and automation; defining elements of future work; and the dualistic impact of AI on work, seen as both a threat and an opportunity. Furthermore, our study explored the effects of automation on quality of life, the evolving meaning of work, and the emergence of new skills. A critical analysis was also conducted on how to balance technology with humanism, addressing challenges and strategies in workforce automation. This study offers a comprehensive scientometric view of new-age professions, highlighting the most important trends, challenges, and opportunities in this rapidly evolving field.
This study evaluates the effectiveness of Indonesia’s defense industry policy from 2018 to 2023, focusing on PT Pindad, a pivotal state-owned defense enterprise. Using a Balanced Scorecard (BSC) framework, the study assesses PT Pindad’s performance across financial, customer, internal process, and learning and growth perspectives. The findings reveal strengths in financial stability (Current Ratio at 115.57% in 2023) and customer satisfaction, but challenges in Return on Investment (ROI), which fell from 6% in 2022 to 5.46% in 2023, signaling a need for further internal improvements. A mediation analysis using Shape-Restricted Regression indicates that Research and Development (R&D) serves as a crucial mediator, enhancing the impact of strategic alliances and technology transfer on PT Pindad’s self-reliance, with R&D showing a positive coefficient of β = 0.53 (p < 0.01). The systematic literature review complements these findings, underscoring the role of technology transfer, human capital development, and strategic partnerships as essential components for strengthening PT Pindad’s self-reliance and global competitiveness. Recommendations are made to enhance policy effectiveness by fostering robust technology transfer mechanisms, increasing investment in human capital, and expanding strategic partnerships. This research contributes to the literature on defense industry policies by providing a comprehensive evaluation framework that informs future policy decisions.
Copyright © by EnPress Publisher. All rights reserved.