By carrying out a laboratory experiment, the influence of priming methods, including ZnSO4, BSN, and hydropriming was evaluated on the seed germination of hybrid AS71 corn. Then, the main and interaction effects of the priming methods, planting dates, and weed interference levels were surveyed on the vegetative growth traits, yield, and yield components of corn in a field experiment. Based on the lab experiment, although the maximum germination percentage (100%) was observed in the treated plots by hydropriming 22 h after treatment (HAT), the greatest seedling vigor index (122.99) was recorded with treated seeds by ZnSO4 (0.03 mg L–1) at 8 HAT. The greatest emergence index was observed in the treated plots by hydropriming on both planting dates of June 1 and 11. The interaction of planting dates and weed interference levels revealed that the highest emergence index (14%–17%) occurred in the weed-free plots on both planting dates. BSN recorded the greatest corn 1000-grain weight that was significantly higher than the control plots by 28%. Furthermore, BSN enhanced the corn grain yield compared with the control plots by 63% and 24.9% on the planting dates of June 1 and 11, respectively. BSN, as a nutri-priming approach, by displaying the highest positive effects in boosting the corn grain yield in both weedy and weed-free plots as well as both planting dates, could be a recommendable option for growers to improve the crop yield production.
The study evaluated 33 accessions of groundnut in the field, consisting of 23 landraces from Nasarawa communities in Nigeria and 10 inbred lines. Assessment entailed the determination of plant survivorship, yield related parameters and pathological indices while genetic diversity study was undertaken using SSR and RAPD molecular markers. Data analysis was done on the Minitab 17.0 software. Significant variability was noted in all traits except in pod sizes, seed sizes and % infected seeds. About 33.3% of the accessions had a survival rate of ≥ 70.0% where 9/10 Inbred lines were found with overall yield (kg/ha) ranging from 4.0 ± 1.6 in Akwashiki-Doma to 516.8 ± 46.9 kg/ha in Samnut 24 × ICGV–91328. Five accessions (15.5%) had pathological indices of zero indicating no traces of any disease of any type and they included one landrace called Agric-Dazhogwa and four Inbred lines: Samnut 25 × ICGV–91317, Samnut 26 × ICGV–19324, Samnut 26 × ICGV–91328 and Samnut 26 × ICGV–91319. Coefficients of yield determination R2 by survivorship and pathological index were 50.6% and 15%, respectively. A fit model was established (Yield in kg/ha = –146 − 7.94 × Pi + 5.88 × S). Susceptibility to diseases depends on the type of variety (χ2(32) = 127.67, P = 0.00). Yield was significantly affected by BNR@30 (F = 5.47, P = 0.025, P < 0.05) and DSV@60*RUST@60 interaction effect (F = 4.39, P = 0.044, P < 0.05). The similarity coefficient ranged from 28.57 to 100 in plant morphology. Four varieties had no amplified bands with SSR primers whereas amplified bands were present only in four landraces accessions using the RAPD primer. The dendrogram generated by molecular data gave three groups where genetic similarity ranged from 41.4 to 100.0. The Inbred lines were noted for their high survivorship, good yield and disease resistance. Samnut 24 × ICGV–91328, an inbred line, had the highest yield but was susceptible to diseases. Among the landraces, Agric-Musha, Bomboyi-Dugu and Agric-Dazhogwa were selected for high survivorship and disease resistance. The selected inbred lines and landraces are valuable genetic resources that may harbour useful traits for breeding and they should be presented to the growers based on their unique agronomic values. The highest yielding inbred lines should be improved for resistance to late leaf spot diseases while the outstanding landraces should be improved for yield.
An experiment was conducted to assess the effect of psychoenergetic energy in litchi as positive and negative thoughts using a simple meditation technique at ICAR-NRC on Litchi, Muzaffarpur. The plant produced 24.75 g of fruit given positive energy, while the plant with negative thought energy produced 22.12 g of fruit. The fruit and seed weight increased by 11.88% and 13.63%, respectively, due to positive energy. The number of fruit retentions increased by 23.77% due to positive energy. Anthocyanin content in pericarp was increased by 5.45% in plants given positive energy. Fruit qualities were also significantly affected by psychoenergy. TSS (Brix) was significantly increased by 13.54% in plants given positive energy as compared to negative energy, and titratable acidity was reduced by 25% due to positive energy. Ascorbic acid was also increased by 30% in plant given positive thoughts. Sun burn was reduced by 54.76% and fruit cracking by 63.64% due to energy of thought. Fruit borer infestation was reduced by 70%, and mite infestation was reduced by 90% in plants given positive energy. The psychoenergetic potential is vast, and its ability to improve crop yield and quality cannot be overstated. The hidden power of thought is being practiced by all, but mostly people do not know this power and use it in an improper manner. This is a high time when we need to practice generating powerful thoughts to change present-day agriculture and its dependents.
Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
Cucumber (Cucumis sativus L.) is a tropical vegetable and a source of vitamins such as K, C, and B. It is commonly grown and sold for daily consumption, but picking the right fruit size is more profitable. Therefore, a method for estimating the fruit weight is highly recommended. This paper aimed to determine the dimensions of cucumber fruit based on its usual harvesting size and to establish a model to show the relationship between fruit weight, fruit length, and fruit diameter. Cucumber was planted in the experimental field belonging to the Faculty of Agricultural Biosystems Engineering, Royal University of Agriculture, Phnom Penh, Cambodia, from January to June 2022. In the study, 48 market-size fruits were randomly selected from the plots to measure their weight, length, and diameter. The result shows that fruit length and fruit diameter had a positive relationship (P < 0.001; R = 0.70). Fruit weight was 3.38 fruit length × fruit diameter (P <0.001; R = 0.95). Nevertheless, L/D ratio negatively affected fruit weight, when it exceeded 3:1. Fruit weight was greater than 100 g when fruit diameter was over 4 cm and fruit length was over 10 cm. Therefore, when picking cucumber fruits, one must consider fruit length and diameter to be profitable. Further studies will focus on measuring cucumber fruit already available on the market to understand more about actual consumer preferences.
The enormous biological potential of herbal products is one of the main reasons for their frequent use in the production of dietary supplements and functional foods, which, in addition to their nutritional properties, have pharmacological and physiological effects. New scientific knowledge on the isolation of pharmacologically active compounds from complex matrices has led to significant advances in this field. Today, the process of extraction plays a significant scientific role, with “green” technologies occupying a special place in today’s science. Herbal medicine is one of the oldest human skills, which has worn off with its centuries-old application in the path of modern medicine. Microwave-assisted extraction, or more simply, microwave extraction, is a new extraction technique that combines traditional extraction solvents and microwaves. The mentioned method takes less time, consumes less energy, and has strong penetration power into the plant matrix to obtain more oils, but it can also reduce production costs. This can eventually increase the quality of the final product and reduce the product price at the consumer level. Microwave-assisted extraction could be useful to the herbal industry for oil extraction as well as other pharmaceutically important plant components. Based on a comparison and study of published literature, this research examines the present state of extraction procedures. This review includes a detailed discussion of the most important extraction techniques.
Hydroponics is a modern agricultural system that enables year-round plant growth. Biochar, derived from apple tree waste, and humic acid were investigated as a replacement for the Hoagland nutrient solution to grow strawberries in a greenhouse with three replications. Growth parameters, such as leaf area, the average number of fruits per plant, maximum fruit weight, and the weight of fresh and dry fruits, were measured. A 50% increase in fresh and dry fruit weight was observed in plants grown using biochar compared to the control. Additionally, the use of Hoagland chemical fertilizer led to a 25% increase in both fresh and dry weight. There was a 65% increase in the number of fruits per plant in the biochar-grown sample compared to the control. Moreover, biochar fertilizer caused a 100% increase in maximum fruit weight compared to the control and a 27% increase compared to the Hoagland chemical fertilizer. Biochar had a higher pH compared to the Hoagland solution, and such pH levels were conducive to strawberry plant growth. The results indicate that biochar has the potential to enhance the size and weight of fruits. The findings of the study demonstrate that biochar, when combined with humic acid, is a successful organic hydroponic fertilizer that improves the quality and quantity of strawberries. Moreover, this approach enables the more efficient utilization of garden waste.
Copyright © by EnPress Publisher. All rights reserved.