Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
Highly nutritive and antioxidants-enriched okra (Abelmoschus esculentus) gets sub-optimal field yield due to the irregular germination coupled with non-synchronized harvests. Hence, the research aimed at assessing the combined impact of seed priming and field-level gibberellic acid (GA3) foliar spray on the yield and post-harvest quality of okra. The lab studies were conducted using a complete randomized design (CRD), while the field trials were performed following a factorial randomized complete block design (RCBD) with three replications. Okra seeds were subjected to ten different priming methods to assess their impact on seed germination and seeding vigor. In the premier step, okra seeds were subjected to ten different priming methods, like hydro priming for 6, 12, and 18 h, halo priming with 3% NaCl at 35 ℃, 45 ℃, and 60 ℃, acid priming with 80% H2SO4 for 2.5, 5, and 10 min. Based on the observation, hydro priming for 12 h exhibited the best germination rate (90%), followed by halo seed priming at 60 ℃ and acid priming for 5 min. Furthermore, the halo priming at 60 ℃ demonstrated the greatest seedling vigor index (1965), whereas acid priming for 5 min resulted in favorable outcomes in terms of early emergence in 2.66 days. In addition, varying concentrations of GA3 (0, 100, 200, and 300 ppm) were also administered to the best three primed seedlings for evaluating their field performance. The findings indicated that applying GA3 at a concentration of 300 ppm to seedlings raised through acid priming (80% H2SO4 for 5 min) resulted in improved leaf length, reduced time to flowering (first and 50%) and harvest, increased pod diameter, individual pod weight, and yield per plant (735.16 g). Additionally, the treatment involving GA3 at 300 ppm with halo priming (3% NaCl) at 60 ℃ exhibited the longest shelf life (21 days) of okra with the lowest levels of rotting (6.73%) and color change (1.12) in the polyethylene storage condition.
The enormous biological potential of herbal products is one of the main reasons for their frequent use in the production of dietary supplements and functional foods, which, in addition to their nutritional properties, have pharmacological and physiological effects. New scientific knowledge on the isolation of pharmacologically active compounds from complex matrices has led to significant advances in this field. Today, the process of extraction plays a significant scientific role, with “green” technologies occupying a special place in today’s science. Herbal medicine is one of the oldest human skills, which has worn off with its centuries-old application in the path of modern medicine. Microwave-assisted extraction, or more simply, microwave extraction, is a new extraction technique that combines traditional extraction solvents and microwaves. The mentioned method takes less time, consumes less energy, and has strong penetration power into the plant matrix to obtain more oils, but it can also reduce production costs. This can eventually increase the quality of the final product and reduce the product price at the consumer level. Microwave-assisted extraction could be useful to the herbal industry for oil extraction as well as other pharmaceutically important plant components. Based on a comparison and study of published literature, this research examines the present state of extraction procedures. This review includes a detailed discussion of the most important extraction techniques.
Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
The aim of the present study was to determine the effects of single and mixed infections of nematode (Meloidogyne javanica), fungus (Fusarium oxysporum) and bacterium (Xanthomonas axonopodis) on nodulation and pathological parameters of Bambara groundnut (Vigna subterrenea (L.) Verdc.) in field condition. Nematode infested field was used while other pathogens were obtained from diseased plants. The Randomized Complete Block Design (RCBD) was adopted in a 5 × 9 × 5 factorial design (5 blocks, 9 treatments and 5 replicates per treatments) resulting in 225 experimental units. In each experimental unit, three seeds were sown to a depth of 5cm and thinned to one plant per planting hole after germination at day 7. Treatments were inoculated into test plant following standard methods. As a result, the control treatment recorded the highest number of nodules (64.0 ± 6.91), followed by bacterium (45.2 ± 5.11) while N + F + B had the lowest number of root nodules (23.4 ± 2.42). Simultaneous treatment (N + F + B) gave the highest percentage reduction in nodulation (63.44%), followed by treatment N + F7 (56.25%). Fungus treatment recorded the highest mean wilted plants (3.8 + 0.20) followed by N + F7 treatment (3.40 + 0.40). Gall formation in the nematode treatment increased proportionately by 56.33% as the highest recorded, followed by treatment N + F7 with 50.0%. Treatment N + F7 had the highest reproduction factor (Rf) value of 9.30 followed by nematode (8.30), N + B7 (7.40), N + F + B (6.80) and N + F14 (6.50). Zero (0) Rf value was recorded in fungus, bacterium and control treatments. The observed differences in nodulation and pathological parameters among the treatments are significant (P < 0.05). The data provided in this work is important in the control of the three pathogens affecting the productivity of Bambara nut. Formulation of a single protectant should be designed to have potent effects on the three pathogens to achieve effective protection and good production of Bambara nut.
Copyright © by EnPress Publisher. All rights reserved.